

INTRODUCTION

AML treatment options have been recently enriched. New agents like gemtuzumab ozogamicin (GO), FLT3 or IDH inhibitors, or CPX-351 have been approved for some patient subsets. Less-intensive options, like the AZA-VEN combination, are used in older/unfit patients.

However, while treatments and indications are standardized, their choice is not, depending on often-subjective factors.

This makes observational studies so important to describe real-life management and outcomes of AML patients.

AIM

The French ALFA group initiated a prospective 2-cohort (newly-diagnosed, relapsed/refractory) observational study in 2022.

This ALFA-PPP study (NCT04777916) aims to prospectively collect clinical data and bio-samples in all AML patients aged 18 years old or more referred to 27 ALFA centers.

Here is the first study report, focusing on newly diagnosed patients with a special interest for less intensive therapies

METHODS

All patients were screened at baseline for disease/patient characteristics including centralized genomics (50-gene panel) and biobanking (French AML Intergroup Lab. Lille, France).

Data/sample collection was then structured by currently approved therapies selected in each individual patient. Patients included frontline into a clinical trial were tagged and followed.

Treatment decision-making criteria were prospectively collected.

Were report here on the first 648 eligible patients who entered the study between April 2022 and September 2023

Median age, years (range) Gender M/F, N (%) ECOG-PS 0-1/2/3+/NA, N HCT-CI 0/1-2/3+/NA, N Median WBC, G/L (IQR) Median BM blast percentage (IQR) AML type, N (%) • de novo Post-MDS Post-MPN

Therapy-related

Se

*: including ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or ZRSR2, as defined in the ELN-2022 classification (H. Döhner et al. Blood 2022;140:1345-1377)

With a median age of 65 years, more than half of reallife patients have ELN adverse-risk AML. The incidence of secondary-AML like gene mutations is 48%

TREATMENTS AND OUTCOMES OF ADULT PATIENTS WITH AML IN THE REAL-LIFE - THE FRENCH OBSERVATIONAL ALFA-PPP STUDY

H. DOMBRET¹, A. COELHO², L. FENWARTH³, JB. MICOL⁴, L. ADES¹, T. CLUZEAU⁵, E. RAFFOUX¹, S. CHANTEPIE⁶, P. ARNAUTOU⁷, M. LECLERC⁸, D. LEBON⁹, T. BRAUN¹⁰, O. LEGRAND¹¹, C. BORIES¹², C. BERTHON¹³, J. LAMBERT¹⁴, A. ALJIJAKLI¹⁵, E. LEMASLE¹⁶, P. TURLURE¹⁷, B. CARPENTIER¹⁸, J. FRAYFER¹⁹, S. HAIAT^{20†}, A. MARCAIS²¹, I. PLANTIER²², KJ. WATTEBLED²³, M. UZUNOV²⁴, I. VAIDA²⁵, M. HEIBLIG²⁶, L. GASTAUD²⁷, L. FARNAULT-DE LASSUS²⁸, D. PENTHER¹⁶, N. RAUS²⁹, K. CELLI-LEBRAS², R. BUFFET², C. PREUDHOMME³, N. DUPLOYEZ³, R. ITZYKSON¹, S. DE BOTTON⁴.

1. University Hospital Saint-Louis (AP-HP), Paris; 2. ALFA coordination, Paris; 3. Central AML Intergroup Lab., Lille; 4. Gustave Roussy, Villejuif; 5. University Hospital, Nice; 6. University Hospital, Caen; 7. Percy Hospital, Clamart; 8. University Hospital Henri Mondor (AP-HP), Créteil; 9. University Hospital, Amiens; 10. University Hospital Saint-Antoine (AP-HP), Paris; 12. Schaffner Hospital, Lens; 13. University Hospital, Lille; 14. Mignot Hospital, Le Chesnay; 15. Victor Dupouy Hospital, Argenteuil; 16. Centre Henri Becquerel, Rouen; 17. University Hospital, Limoges; 18. Saint Vincent de Paul Hospital, Lille; 19. Grand Hôpital Est Francilien, Meaux; 20. Centre Hospitalier Sud Francilien, Corbeil; 21. University Hospital Necker (AP-HP), Paris; 23. Alexandra Lepève Hospital, Dunkerque; 24. University Hospital La Pitié Salpêtrière (AP-HP), Paris; 25. NOVO Hospital, Pontoise; 26. University Hospital Lyon-Sud, Pierre Bénite; 27. Centre Antoine Lacassagne, Nice; 28. University Hospital Timone, Marseille; 29. SFGM-TC coordination, Lyon, France.

RESULTS

1) DEMOGRAPHY

Clinical characteristics

65y (18-100) 340/308 (52/48%) 490/97/41/20 54/375/216/3 6.9 (2.4-26) 53% (29-79)

467 (72%) 54 (8%) 58 (9%) 69 (11%)

HCT-CI, hematopoietic cell transplantation comorbidity index (ML. Sorror et al. JAMA Oncol 2017;3:1675-1682)

Biological characteristics

N-2022 risk group. N (%)			
Favorable	136 (21%)		
Intermediate	129 (20%)		
Adverse	340 (52.5%)		
Non classified	43 (6.5%)		
lected gene mutation, N/N tested (%)			
NPM1	162/594 (27%)		
<i>FLT3</i> -ITD	115/595 (19%)		
DH1/2 131/595 (2			
TP53	73/595 (12%)		
Secondary AML-like genes*	284/595 (48%)		

First 648 patients included in the study

CONCLUSIONS

This first ALFA-PPP study report illustrates the current real-life management of French adult patients with AML, confirming the rising place of less-intensive treatment options in a European context (annual reports are planned in the next future) The outcome of less-intensively treated patients appears to be somewhat inferior to that reported for instance in the pivotal VIALE-**A AZA-VEN trial** (CD DiNardo et al. NEJM 2020;383:617-629)

The risk classification of less-intensively treated patients likely depends on a composite set of clinical and biological factors which remains to be standardized despite recent proposals (H. Döhner et al. Blood 2024 Aug 12; FW. Hoff et al. Blood Adv. 2024 Oct 22)

3) LESS-INTENSIVE THERAPIES Real-life selection criteria

Criteria leading the physician to select a less-intensive therapy (185 patients)

138 (75%)

50 (27%)

- Advanced age
- Comorbidities
- AML characteristics – Other reason
 - 36 (19%) 11 (6%)
 - 1 (1%)
- Patient's choice The choice was based on AML characteristics only in 18 patients (10%)

Multivariate analysis of criteria objectively associated with the choice of less-intensive therapy

Criteria	OR (95% CI)
Age ≥65y	21.2 (9.6-46.7)
Higher ECOG-PS	3.2 (1.8-5.8)
Higher HCT-CI	2.7 (1.5-4.9)
Lower WBC	0.99 (0.98-0.99)
Post-MDS AML	6.3 (2.1-18.9)
Post-MPN AML	6.6 (2.4-18.1)
Poor ELN-2017 cytogenetics	2.1 (1.01-4.4)
TP53 mutation	5.4 (1.8-16.6)
IDH1/2 mutation	3.1 (1.4-6.5)

The covariates entering the model were age (65y), sex, ECOG-PS (3 classes), HCT-CI (3 classes), WBC and BM blast % as continuous covariates, post-MDS, post-MPN and t-AML, poor cytogenetics (according to the ELN-2017 classification; Blood 2017;129:424-447), NMP1, FLT3-ITD, IDH1/2, and TP53 gene mutations.

- A myriad of independent factors governs real-life choice of a less-intensive vs. intensive treatment
- A good correlation between the reasons given by the physician and the objective factors was observed (not shown)

P value

< 0.001

< 0.001

0.001

0.022

0.001

< 0.001

0.046

0.003

0.003

4) LESS-INTENSIVE THERAPIES Real-life outcome

Stepwise Cox model for a shorter overall survival in less-intensively treated patients

Factor	HR (95% CI)	P value
Higher ECOG-PS	1.3 (1.01-1.6)	0.038
Presence of comorbidity	1.9 (1.2-3.0)	0.003
Marrow blast percentage	1.01 (1.0-1.02)	0.024
Therapy-related AML	1.8 (1.01-3.3)	0.046
sAML-like mutations	1.6 (1.01-2.5)	0.048
TP53 mutation	3.6 (2.1-6.4)	<0.001
No IDH1/2 mutation	2.7 (1.5-4.8)	0.001

The covariates entering the model were age (65y), sex, ECOG-PS, HCT-CI (3 classes), presence of comorbidity by investigator's judgement, WBC and BM blast % as continuous covariates, post-MDS, post-MPN and t-AML, poor cytogenetics (according to the ELN-2017 classification; Blood 2017;129:424-447), ELN-2022 risk, NMP1, FLT3-ITD, IDH1/2, N/K-RAS, TP53 and sAML-like gene mutations.

Rather than age by itself, survival after less-intensive treatment is governed by multiple independent clinical and genomic factors.

CONTACT INFORMATION

Karine Celli-Lebras, karine.cellilebras@alfa-leukemia.org **Renaud Buffet**, renaud.buffet@alfa-leukemia.org Hervé Dombret, herve.dombret@mac.com

